73 research outputs found

    Towards a Physiology-Based Measure of Pain: Patterns of Human Brain Activity Distinguish Painful from Non-Painful Thermal Stimulation

    Get PDF
    Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI) and support vector machine (SVM) learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001). Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI) analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be completed to advance this approach toward use in clinical settings

    Magnetic resonance arthrography of the hip: technique and spectrum of findings in younger patients

    Get PDF
    Magnetic resonance(MR) imaging is the reference imaging technique in the evaluation of hip abnormalities. However, in some pathological conditions—such as lesions of the labrum, cartilaginous lesions, femoroacetabular impingement, intra-articular foreign bodies, or in the pre-operative work-up of developmental dysplasia of the hip—intra-articular injection of a contrast medium is required to obtain a precise diagnosis. This article reviews the technical aspects, contraindications, normal appearance and potential pitfalls of MR arthrography, and illustrates the radiological appearance of commonly encountered conditions

    The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli

    Get PDF
    Increasing evidence about the central nervous representation of pain in the brain suggests that the operculo-insular cortex is a crucial part of the pain matrix. The pain-specificity of a brain region may be tested by administering nociceptive stimuli while controlling for unspecific activations by administering non-nociceptive stimuli. We applied this paradigm to nasal chemosensation, delivering trigeminal or olfactory stimuli, to verify the pain-specificity of the operculo-insular cortex. In detail, brain activations due to intranasal stimulation induced by non-nociceptive olfactory stimuli of hydrogen sulfide (5 ppm) or vanillin (0.8 ppm) were used to mask brain activations due to somatosensory, clearly nociceptive trigeminal stimulations with gaseous carbon dioxide (75% v/v). Functional magnetic resonance (fMRI) images were recorded from 12 healthy volunteers in a 3T head scanner during stimulus administration using an event-related design. We found that significantly more activations following nociceptive than non-nociceptive stimuli were localized bilaterally in two restricted clusters in the brain containing the primary and secondary somatosensory areas and the insular cortices consistent with the operculo-insular cortex. However, these activations completely disappeared when eliminating activations associated with the administration of olfactory stimuli, which were small but measurable. While the present experiments verify that the operculo-insular cortex plays a role in the processing of nociceptive input, they also show that it is not a pain-exclusive brain region and allow, in the experimental context, for the interpretation that the operculo-insular cortex splay a major role in the detection of and responding to salient events, whether or not these events are nociceptive or painful

    Donors, Aid and Taxation in Developing Countries: An Overview

    Get PDF
    Recent years have witnessed rapidly growing donor interest in tax issues in the developing world. This reflects a concern with revenue collection to finance public spending, but also recognition of the centrality of taxation to growth, redistribution and broader state-building and governance goals. Against this backdrop, this paper identifies a series of key issues that demand attention if donors are to improve the quality of their support for tax reform. The focus is not, primarily, on the technical design of tax interventions, but, instead, on seven ‘big picture’ considerations for the design of donor programmes: (a) supporting local leadership of reform efforts; (b) incorporating more systematic political economy analysis into the design and implementation of reform programmes; (c) designing tax reform programmes that seek to foster broader linkages between taxation, state-building and governance; (d) paying careful attention to the complexity of the relationship between aid and tax effort; (e) better designing tax-related conditionality, particularly by developing a more nuanced set of performance indicators; (f) ensuring the effective coordination of donor interventions; and (g) paying greater attention to the international policy context, and particularly the role of tax exemptions for donor projects, tax havens and tax evasion by multinational corporations (MNCs) in undermining developing country tax systems.DfI

    Foreign aid, instability and governance in Africa

    Get PDF
    This study contributes to the attendant literature by bundling governance dynamics and focusing on foreign aid instability instead of foreign aid. We assess the role of foreign aid instability on governance dynamics in fifty three African countries for the period 1996-2010. An autoregressive endogeneity-robust Generalized Method of Moments is employed. Instabilities are measured in terms of variance of the errors and standard deviations. Three main aid indicators are used, namely: total aid, aid from multilateral donors and bilateral aid. Principal Component Analysis is used to bundle governance indicators, namely: political governance (voice & accountability and political stability/no violence), economic governance (regulation quality and government effectiveness), institutional governance (rule of law and corruption-control) and general governance (political, economic and institutional governance). Our findings show that foreign aid instability increases governance standards, especially political and general governance. Policy implications are discussed

    Viewing the body modulates both pain sensations and pain responses

    Get PDF
    Viewing the body can influence pain perception, even when vision is non-informative about the noxious stimulus. Prior studies used either continuous pain rating scales or pain detection thresholds, which cannot distinguish whether viewing the body changes the discriminability of noxious heat intensities or merely shifts reported pain levels. In Experiment 1, participants discriminated two intensities of heat-pain stimulation. Noxious stimuli were delivered to the hand in darkness immediately after participants viewed either their own hand or a non-body object appearing in the same location. The visual condition varied randomly between trials. Discriminability of the noxious heat intensities (d?) was lower after viewing the hand than after viewing the object, indicating that viewing the hand reduced the information about stimulus intensity available within the nociceptive system. In Experiment 2, the hand and the object were presented in separate blocks of trials. Viewing the hand shifted perceived pain levels irrespective of actual stimulus intensity, biasing responses toward ‘high pain’ judgments. In Experiment 3, participants saw the noxious stimulus as it approached and touched their hand or the object. Seeing the pain-inducing event counteracted the reduction in discriminability found when viewing the hand alone. These findings show that viewing the body can affect both perceptual processing of pain and responses to pain, depending on the visual context. Many factors modulate pain; our study highlights the importance of distinguishing modulations of perceptual processing from modulations of response bias

    A trade-off between dissolved and amorphous silica transport during peak-flow events (Scheldt river basin, Belgium) : impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments

    No full text
    Amorphous, biogenic Si (ASi) is stored in large amounts in terrestrial ecosystems. The study of terrestrial ASi mobilization remains in the pioneer research stage: most Si budget studies have not included the biogenic amorphous Si stock and fluxes. This hampers our ability to accurately quantify terrestrial mobilization of Si, which is—through ocean carbon burial and CO2 uptake during terrestrial Si weathering—intricately linked to global carbon budgets. We studied detailed concentration and load patterns of dissolved (DSi) and ASi during several high-discharge events in eight first-order river basins. Based on high frequency discharge measurements and concurrent analysis of ASi and DSi concentrations at base flow and during intense precipitation events, we were able to attribute a percentage of yearly ASi and DSi fluxes to both base flow and precipitation event related surface run-off. Our results show ASi and DSi concentrations in upstream river basins to be intricately linked to each other and to discharge, and ASi transport constitutes an important part to the total transport of Si even through first-order river basins (up to 40%). Based on our observations, increased occurrence of peak-discharge events with global climatic changes, and lowered importance of base flow, will coincide with drastic changes in ASi and DSi dynamics in the river continuum. Our work clearly shows ASi dynamics should be incorporated in global Si budgets now, even in low-order small river basin
    • 

    corecore